解答题已知圆C:x2+y2=r2(r>0)经过点(1,).
(1)求圆C的方程;
(2)是否存在经过点(-1,1)的直线l,它与圆C相交于A,B两个不同点,且满足=+(O为坐标原点)关系的点M也在圆C上?如果存在,求出直线l的方程;如果不存在,请说明理由.
网友回答
解:(1)由圆C:x2+y2=r2,再由点(1,)在圆C上,得r2=12+()2=4
所以圆C的方程为
x2+y2=4;
(2)假设直线l存在,
设A(x1,y1),B(x2,y2),
M(x0,y0)
①若直线l的斜率存在,设直线l的方程为:
y-1=k(x+1),
联立消去y得,
(1+k2)x2+2k(k+1)x+k2+2k-3=0,
由韦达定理得x1+x2=-=-2+,
x1x2==1+,
y1y2=k2x1x2+k(k+1)(x1+x2)+(k+1)2=-3,
因为点A(x1,y1),B(x2,y2)在圆C上,
因此,得x12+y12=4,
x22+y22=4,
由=+得x0=,y0=,
由于点M也在圆C上,
则=4,
整理得,+3+x1x2+y1y2=4,
即x1x2+y1y2=0,所以1++(-3)=0,
从而得,k2-2k+1=0,即k=1,因此,直线l的方程为
y-1=x+1,即x-y+2=0,
②若直线l的斜率不存在,
则A(-1,),B(-1,-),M;
+=4-≠4,
故点M不在圆上与题设矛盾
综上所知:k=1,直线方程为x-y+2=0解析分析:(1)把点(1,)代入圆的方程求得r,则圆的方程可得.(2)假设直线l存在,设出点A,B和M的坐标,先看若直线l的斜率存在,设直线l的方程与圆的方程联立消去y,根据韦达定理求得x1+x2=和x1x2的表达式,进而根据直线方程求得y1y2的表达式,把A,B点坐标代入圆的方程,根据=+求得x0和y0,代入圆的方程整理得x1x2+y1y2=0,进而求得k,直线l的方程可得.再看直线l的斜率不存在时,可分别求得A,B,M的坐标,代入圆方程结果不符合题意,可判定点M不在圆上.点评:本题主要考查了圆的方程的综合运用.在解决直线方程问题时,一定要对斜率的存在情况进行讨论.