填空题已知定义域为R的函数f(x)=|x2-1|,若关于x的方程f2(x)+bf(x)+c=0恰有7个不同的实数解x1,x2,x3,x4,x5,x6,x7,则x1+x2+x3+x4+x5+x6+x7=________.
网友回答
0解析分析:可令f(x)=t则关于x的方程f2(x)+bf(x)+c=0就转化为关于t的方程t2+bt+c=0作出f(x)=|x2-1|的图象根据图象可得要使关于x的方程f2(x)+bf(x)+c=0恰有7个不同的实数解即使关于t的方程t2+bt+c=0有两个不同实根且f(x)=|x2-1|的图象与y=t的图象的交点的横坐标即为方程f2(x)+bf(x)+c=0的7个不同的实数解再结合f(x)=|x2-1|的图象可知t1=1,0<t2<1故根据对称性可得7个不同的实数解的和为0.解答:令f(x)=t则关于x的方程f2(x)+bf(x)+c=0就转化为关于t的方程t2+bt+c=0故f(x)=|x2-1|的图象与y=t的图象的交点的横坐标即为方程f2(x)+bf(x)+c=0的7个不同的实数解所以关于t的方程t2+bt+c=0有两个不同实作出f(x)=|x2-1|的图象如下图则必有y=t在图示的两个位置才有关于x的方程f2(x)+bf(x)+c=0恰有7个不同的实数解,即t1=1,0<t2<1根据f(x)=|x2-1|的图象关于y轴对称故方程f2(x)+bf(x)+c=0的7个不同的实数解中有一个为0其余6个均关于原点对称故x1+x2+x3+x4+x5+x6+x7=0故