解答题在直角坐标平面XOY上的一列点A1(1,a1),A2(2,a2),A3(3,a3),…An(n,an),…简记为{An},若由构成的数列{bn}满足bn+1>bn,(n=1,2,…,n∈N)?(其中是与y轴正方向相同的单位向量),则称{An}为“和谐点列”.
(1)试判断:A1(1,1),,……是否为“和谐点列”?并说明理由.
(2)若{An}为“和谐点列”,正整数m,n,p,q满足:≤m<n<p<q1,且m+q=n+p.求证:aq+am>an+ap.
网友回答
解:(1)∵,
∴,
又∵,∴,
∴,,
显然bn+1>bn,∴{An}为“和谐点列”.
(2)证明:∵An(n,an),An+1(n+1,an+1),
∴.又因为,
∴bn=an+1-an.
∵1≤m,且m+q=n+p.
∴q-p=n-m>0.
∴aq-qp=aq-qq-1+aq-1-aq-2+…+ap+1-ap=bq-1+bq-2+…+bp.
∵{An}为“和谐点列”∴bn+1>bn.
∴bq-1+bq-2+…+bm=(q-p)bp.
即aq-ap≥(q-p)bp.
同理可证:an-am=bn-1+bn-2+…+bm≤(n-m)bn-1.
∵bp>bn-1,n-m=q-p.
∴(q-p)bq>(n-m)bn-1.
∴aq-ap>an-am.
∴aq+am>an+ap.解析分析:(1)由,知,所以,由此知{An}为“和谐点列”.(2)由An(n,an),An+1(n+1,an+1),知.由,知bn=an+1-an.由此入手能够证明aq+am>an+ap.点评:本题考查数列和不等式的综合运用,解题时要认真审题,注意“和谐点列”的理解和合理地进行等价转化.