线段AB是圆C1:x2+y2+2x-6y=0的一条直径,离心率为的双曲线C2以A,B为焦点.若P是圆C1与双曲线C2的一个公共点,则|PA|+|PB|=
A.
B.4
C.4
D.6
网友回答
D解析分析:由题设知双曲线C2的焦距2c=|AB|=2,双曲线的实半轴a=,由P是圆C1与双曲线C2的公共点,知||PA|-|PB||=2,|PA|2+|PB|2=40,由此能求出|PA|+|PB|.解答:∵圆C1:x2+y2+2x-6y=0的半径r==,线段AB是圆C1:x2+y2+2x-6y=0的一条直径,离心率为的双曲线C2以A,B为焦点,∴双曲线C2的焦距2c=|AB|=2,∵P是圆C1与双曲线C2的一个公共点,∴||PA|-|PB||=2a,|PA|2+|PB|2=40,∴|PA|2+|PB|2-2|PA||PB|=4a2,∵c=,e==,∴a=,∴2|PA||PB|=32,∴∴|PA|2+|PB|2+2|PA||PB|=(|PA|+|PB|)2=72,∴|PA|+|PB|=6.故选D.点评:本题考查|PA|+|PB|的值的求法,具体涉及到圆的简单性质,双曲线的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.