解答题在△ABC中,角A、B、C所对的边长分别为a、b、c,已知cosA+cos2A=

发布时间:2020-07-09 07:48:19

解答题在△ABC中,角A、B、C所对的边长分别为a、b、c,已知cosA+cos2A=0.
(1)求角A的大小;
(2)若a=3,b=2,求的值.

网友回答

解:(1)由cosA+cos2A=0 得2cos2A+cosA-1=0,…(2分),
解得cosA=-1,或…(4分).
因为A是三角形的内角,0<A<π,所以.…(6分)
(2)由正弦定理得…(8分),解得?…(9分),
因为b<a,所以,?…(10分),
所以.…(12分)解析分析:(1)由cosA+cos2A=0利用二倍角公式,解一元二次方程求得cosA的值,可得A的值.(2)由正弦定理求得sinB的值,可得cosB的值,再利用两角和的正弦公式求得的值.点评:本题主要考查同角三角函数的基本关系,正弦定理的应用,根据三角函数的值求角,以及两角和的正弦公式的应用,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!