设数列{an}的各项均为正数,前n项和为Sn,已知(1)证明数列{an}是等差数列,并求其通项公式;(2)是否存在k∈N*,使得,若存在,求出k的值;若不存在请说明理

发布时间:2020-08-04 18:07:15

设数列{an}的各项均为正数,前n项和为Sn,已知
(1)证明数列{an}是等差数列,并求其通项公式;
(2)是否存在k∈N*,使得,若存在,求出k的值;若不存在请说明理由;
(3)证明:对任意m、k、p∈N*,m+p=2k,都有.

网友回答

(1)解:∵,
∴当n≥2时,.
两式相减得,
∴(an+an-1)(an-an-1-2)=0
∵an>0,∴an-an-1=2,
又,∴a1=1
∴{an}是以a1=1为首项,d=2为公差的等差数列.?
∴an=a1+(n-1)d=2n-1;
(2)解:由(1)知,
假设正整数k满足条件,
则(k2)2=[2(k+2048)-1]2
∴k2=2(k+2048)-1,
解得k=65;?????????????????????????
(3)证明:由得:
于是
∵m、k、p∈N*,m+p=2k,

=.
∴.
解析分析:(1)首先在递推式中取n=1求出a1,再取n=n+1得另一递推式,两式作差后可得到数列是等差数列,从而可求通项公式;(2)假设存在k∈N*,使得,代入通项公式和前n项和公式后可求k的值;(3)由等差数列的前n项和求得Sm,Sp,Sk,把要证明的不等式作差后利用基本不等式放缩后可得结论.

点评:本题考查了利用递推式求数列的通项公式,考查了利用作差法证明不等式,解答此题的关键是利用基本不等式进行放缩,此题是中档题.
以上问题属网友观点,不代表本站立场,仅供参考!