如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.(1)求证:PA∥平面BDM

发布时间:2020-07-31 22:19:33

如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.
(1)求证:PA∥平面BDM;
(2)求直线AC与平面ADM所成角的正弦值.

网友回答

解:(1)证明:连接AC,交BD于点O,连接MO
因为MO是△PAC的中位线,
所以MO∥PA
又因为MO?面PAD中,
所以MO∥面PAD
(2)因为S△ADC=,点M到面ADC的距离h1=,所以VM-ADC==.
因为△PDC为等腰三角形,且M为PC的中点,所以DM⊥PC.
取PB的中点E,AD的中点N,连接ME,PN,NE,BN
因为四边形DMEN为平行四边形
所以DM∥NE
又因为△PNB为等腰三角形,所以NE⊥PB
所以DM⊥PB.
因为DM⊥PC,DM⊥PB且PC∩PB=P
所以DM⊥面PBC.
所以DM⊥BC.
因为BC∥AD
所以AD⊥DM,因为DM=
所以S△ADM==
所以VM-ADC=VC-ADM=S△ADM×h2×
所以h2=
所以sinθ=
解析分析:(1)连接AC,交BD于点O,连接MO,由三角形中位线定理易得MO∥PA,进而由线面平行的判定定理得到PA∥平面BDM;(2)利用等体积法,根据VM-ADC=VC-ADM,我们分别计算出S△ADC,点M到面ADC的距离h1,S△ADM的大小,即可求出C点到平面ADM的距离,进而求出直线AC与平面ADM所成角的正弦值.

点评:本题考查的知识点是直线与平面所成的角,直线与平面平行的判定,其中(1)的关键是证得MO∥PA,(2)的关键是根据等体积法,求出C点到平面ADM的距离.
以上问题属网友观点,不代表本站立场,仅供参考!