设函数.
(Ⅰ)求f(x)的最小正周期.
(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g(x)的最大值.
网友回答
解:(1)f(x)===
故f(x)的最小正周期为T==8
(2)在y=g(x)的图象上任取一点(x,g(x)),它关于x=1的对称点(2-x,g(x)).
由题设条件,点(2-x,g(x))在y=f(x)的图象上,
从而==
当时,时,
因此y=g(x)在区间上的最大值为
解析分析:(1)利用两角差的正弦公式及二倍角公式及化简三角函数;再利用三角函数的周期公式求出周期.(2)在y=g(x)上任取一点,据对称行求出其对称点,利用对称点在y=f(x)上,求出g(x)的解析式,求出整体角的范围,据三角函数的有界性求出最值.
点评:本题考查常利用三角函数的二倍角公式及公式化简三角函数、利用轴对称性求函数的解析式、利用整体角处理的思想求出最值.