解答题已知数列{an}满足a1=2,nan+1=(n+1)an+2n(n+1)
(Ⅰ)证明:数列{}为等差数列,并求数列{an}的通项;
(Ⅱ)设cn=,求数列{cn?3n-1}的前项和Tn.
网友回答
(Ⅰ)证明:∵nan+1=(n+1)an+2n(n+1)
∴=2
∴数列{}为等差数列
∵a1=2,∴=2+(n-1)×2=2n
∴;
(Ⅱ)解:cn==n,则cn?3n-1=n?3n-1,
∴Tn=1×30+2×31+…+n?3n-1,
∴3Tn=1×31+2×32+…+n?3n,
两式相减可得:-2Tn=1×30+1×31+…+3n-1-n?3n=-n?3n,
∴Tn=+()×3n解析分析:(Ⅰ)由nan+1=(n+1)an+2n(n+1)可得=2,从而可证数列{}为等差数列,由此可求数列的通项;(Ⅱ)确定数列的通项,利用错位相减法可求数列的和.点评:本题考查数列递推式,考查数列的通项与求和,确定数列的通项是关键.