设{a}是正数数列,其前n项和Sn满足Sn=(an-1)(an+3).(1)求a1的值;求数列{an}的通项公式;(2)对于数列{bn},令bn=,Tn是数列{bn}

发布时间:2020-07-31 18:14:07

设{a}是正数数列,其前n项和Sn满足Sn=(an-1)(an+3).
(1)求a1的值;求数列{an}的通项公式;
(2)对于数列{bn},令bn=,Tn是数列{bn}的前n项和,求Tn.

网友回答

解:(1)由a1=S1=,及an>0,得a1=3
由得.
∴当n≥2时,
∴2(an+an-1)=(an+an-1)(an-an-1)∵an+an-1>0∴an-an-1=2,
∴{an}是以3为首项,2为公差的等差数列,∴an=2n+1
(2)由(1)知Sn=n(n+2)∴,
Tn=b1+b2+…+bn

==

由,得
得,得

因而n满足的最小整数(14分)
解析分析:(1)由题设条件得a1=3,,由此能求出数列{an}的通项公式.(2)由(1)知Sn=n(n+2),所以,再用裂项求和法求出数列{bn}的前n项和Tn,由此能求出Tn.

点评:本题考查数列的极限和应用,解题时要认真审题,仔细解答,注意裂项求和的灵活运用.
以上问题属网友观点,不代表本站立场,仅供参考!