设等差数列{an}的前n项和为Sn,若a11-a8=3,S11-S8=3,则使an>0的最小正整数n的值是A..8B..9C.10D..11
网友回答
C
解析分析:由a11-a8=3d=3,知d=1,由S11-S8=a11+a10+a9=3a1+27d=3,知a1=-8,故an=-8+(n-1),由此能够求出使an>0的最小正整数n的值.
解答:∵a11-a8=3d=3,∴d=1,∵S11-S8=a11+a10+a9=3a1+27d=3,∴a1=-8,∴an=-8+(n-1)>0,解得n>9,因此最小正整数n的值是10.故选C.
点评:本题考查等差数列的通项公式和前n项和公式的合理运用,是基础题.解题时要认真审题,仔细解答.