函数y=log(x2-3x+2)的递增区间是________.

发布时间:2020-07-31 19:13:56

函数y=log(x2-3x+2)的递增区间是________.

网友回答

(-∞,1)
解析分析:由x2-3x+2>0得x<1或x>2,由于当x∈(-∞,1)时,f(x)=x2-3x+2单调递减,由复合函数单调性可知y=log 0.5(x2-3x+2)在(-∞,1)上是单调递增的,在(2,+∞)上是单调递减的.

解答:由x2-3x+2>0得x<1或x>2,当x∈(-∞,1)时,f(x)=x2-3x+2单调递减,而0<<1,由复合函数单调性可知y=log 0.5(x2-3x+2)在(-∞,1)上是单调递增的,在(2,+∞)上是单调递减的.故
以上问题属网友观点,不代表本站立场,仅供参考!