双曲线的左右焦点为F1,F2,P是双曲线上一点,满足|PF2|=|F1F2|,直线PF1与圆x2+y2=a2相切,则双曲线的离心率为A.B.C.D.
网友回答
D
解析分析:先设PF1与圆相切于点M,利用|PF2|=|F1F2|,及直线PF1与圆x2+y2=a2相切,可得几何量之间的关系,从而可求双曲线的离心率的值.
解答:设PF1与圆相切于点M,因为|PF2|=|F1F2|,所以△PF1F2为等腰三角形,所以|F1M|=|PF1|,又因为在直角△F1MO中,|F1M|2=|F1O|2-a2=c2-a2,所以|F1M|=b=|PF1|①又|PF1|=|PF2|+2a=2c+2a?? ②,c2=a2+b2?③由①②③解得 =.故选D.
点评:本题考查直线与圆相切,考查双曲线的定义,考查双曲线的几何性质,属于中档题.