已知曲线f(x)=xn+1(n∈N*)与直线x=1交于点P,若曲线y=f(x)在点P处的切线与x轴交点的横坐标为xn,则log2012x1+log2012x2+…+log2012x2011=A.-log20122011-2B.-1C.log20122011-1D.1
网友回答
B
解析分析:由题意可得P(1,1),f′(x)=(n+1)xn,根据导数的几何意义可求切线的斜率k,进而可求切线方程,切线方程,在方程中,令y=0可得,,利用累乘可求x1x2…x2011=,代入可求
解答:由题意可得P(1,1)对函数f(x)=xn+1求导可得,f′(x)=(n+1)xn∴y=f(x)在点P处的切线斜率K=f′(1)=n+1,切线方程为y-1=(n+1)(x-1)令y=0可得,∴x1x2…x2011==∴log2012x1+log2012x2+…+log2012x2011=log2012(x1x2…xn)=故选B
点评:本题主要考查了导数的几何意义的应用,累乘及对数的运算性质的综合应用,还考查了基本运算的能力