如图,在棱长为1的正方体ABCD-A1B1C1D1中,P为过正方体表面正方形ABCD,BCC1B1,A1B1C1D1,A1D1DA的中心的圆上的一动点,Q为正方形ABCD的内切圆上的一动点,则PQ的最大值与最小值之和为A.B.C.2D.
网友回答
D
解析分析:根据题意,类比平面几何点圆的位置关系,可得当Q是AD中点时,连接OQ,分别交圆O于E,F,则EQ为PQ的最小值,FQ为PQ的最大值,从而得解.
解答:由题意,设正方体表面正方形ABCD,BCC1B1,A1B1C1D1,A1D1DA的中心的圆的圆心为O,当Q是AD中点时,连接OQ,分别交圆O于E,F,则EQ为PQ的最小值,FQ为PQ的最大值此时,EQ=,FQ=∴PQ的最大值与最小值之和为故选D.
点评:本题以正方体为载体,考查正方体与圆的位置关系,考查距离问题,需要一定的空间想象能力与理解力.