如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=,且当规定正视图方向垂直平面ABCD时,该几何体的侧视图的面积为.若M、

发布时间:2020-07-31 14:05:07

如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=,且当规定正视图方向垂直平面ABCD时,该几何体的侧视图的面积为.若M、N分别是线段DE、CE上的动点,则AM+MN+NB的最小值为________.

网友回答

3
解析分析:由几何体的侧视图的面积为求出几何体的高AD,再四棱锥E-ABCD的侧面AED、DEC、CEB展开铺平,在平面内利用余弦定理求得线段AM+MN+NB长为所求.

解答:取AB中点F,∵AE=BE=,∴EF⊥AB,∵平面ABCD⊥平面ABE,∴EF⊥平面ABCD,易求EF=,左视图的面积S=AD?EF=AD=,∴AD=1,∴∠AED=∠BEC=30°,∠DEC=60°,将四棱锥E-ABCD的侧面AED、DEC、CEB展开铺平如图,则AB2=AE2+BE2-2AE?BE?cos120°=3+3-2×3×(-)=9,∴AB=3,∴AM+MN+BN的最小值为3.故
以上问题属网友观点,不代表本站立场,仅供参考!