已知函数.(Ⅰ)分别求函数f(x)和g(x)的图象在x=0处的切线方程;(Ⅱ)证明不等式;(Ⅲ)对一个实数集合M,若存在实数s,使得M中任何数都不超过s,则称s是M的

发布时间:2020-07-31 14:04:40

已知函数.
(Ⅰ)分别求函数f(x)和g(x)的图象在x=0处的切线方程;
(Ⅱ)证明不等式;
(Ⅲ)对一个实数集合M,若存在实数s,使得M中任何数都不超过s,则称s是M的一个上界.已知e是无穷数列所有项组成的集合的上界(其中e是自然对数的底数),求实数a的最大值.

网友回答

解:(Ⅰ),
则f'(0)=0,g'(0)=0,且f(0)=0,g(0)=0,
所以函数f(x)和g(x)的图象在x=0处的切线方程都是y=0…(3分)
(Ⅱ)令函数,定义域是(-1,+∞),,
设u(x)=2(1+x)ln(1+x)-x2-2x,
则u'(x)=2ln(1+x)-2x,
令v(x)=2ln(1+x)-2x,则,
当-1<x<0时,v'(x)>0,v(x)在(-1,0)上为增函数,
当x>0时,v'(x)<0,v(x)在(0,+∞)上为减函数.
所以v(x)在x=0处取得极大值,且就是最大值,而v(0)=0,
所以u'(x)≤0,函数u(x)在(-1,+∞)上为减函数…(5分)
于是当-1<x<0时,u(x)>u(0)=0,当x>0时,u(x)<u(0)=0,
所以,当-1<x<0时,h'(x)>0,h(x)在(-1,0)上为增函数.
当x>0时,h'(x)<0,h(x)在(0,+∞)上为减函数.
故h(x)在x=0处取得极大值,且就是最大值,而h(0)=0,
所以h(x)≤0,
即,…(8分)
(Ⅲ)由题意可知不等式?对任意的n∈N*都成立,
且不等式等价于不等式,
由知,,设,
则…(10分)
由(Ⅱ)知,,
即(1+x)ln2(1+x)-x2≤0,
所以F'(x)<0,x∈(0,1],
于是F(x)在(0,1]上为减函数.
故函数F(x)在(0,1]上的最小值为,
所以a的最大值为…(13分)
解析分析:(Ⅰ),则f'(0)=0,g'(0)=0,且f(0)=0,g(0)=0,由此能求出函数f(x)和g(x)的图象在x=0处的切线方程.(Ⅱ)令函数,定义域是(-1,+∞),,设u(x)=2(1+x)ln(1+x)-x2-2x,则u'(x)=2ln(1+x)-2x,令v(x)=2ln(1+x)-2x,则,由此能够证明.(Ⅲ)由题意可知不等式?对任意的n∈N*都成立,且不等式等价于不等式,由此能求出a的最大值.

点评:本题考查利用导数求曲线的切线方程,考查不等式的证明,考查实数的最大值的求法.考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
以上问题属网友观点,不代表本站立场,仅供参考!