设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命题“?t∈R,A∩B≠?”是真命题,则实数a的取值范

发布时间:2020-08-01 05:54:18

设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命题“?t∈R,A∩B≠?”是真命题,则实数a的取值范围是________.

网友回答



解析分析:首先要将条件进行转化,即命题P:A∩B≠空集为假命题,再结合集合A、B的特征利用数形结合即可获得必要的条件,解不等式组即可获得问题的解答.

解答:解:∵A={(x,y)|(x-4)2+y2=1},表示平面坐标系中以M(4,0)为圆心,半径为1的圆,B={(x,y)|(x-t)2+(y-at+2)2=1},表示以N(t,at-2)为圆心,半径为1的圆,且其圆心N在直线ax-y-2=0上,如图.如果命题“?t∈R,A∩B≠?”是真命题,即两圆有公共点,则圆心M到直线ax-y-2=0的距离不大于2,即,解得0≤a≤.∴实数a的取值范围是;故
以上问题属网友观点,不代表本站立场,仅供参考!