填空题已知双曲线上一点M到两个焦点的距离分别为20和4,则该双曲线的离心率为________.
网友回答
解析分析:根据双曲线的定义,得2a=|MF1|-|MF2|=16,a=8,从而算出m2的值,结合双曲线基本量的平方关系算出c的值,最后利用离心率的公式,可算出该双曲线的离心率.解答:设双曲线焦点分别为F1、F2,|MF1|=20,|MF2|=4∴2a=|MF1|-|MF2|=16,得a=8因此a2=m2+28=64,得m2=36.所以b2=m2=36,可得c2=a2+b2=100得c=10∴该双曲线的离心率为e===故