连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,那么点P在圆x2+

发布时间:2020-07-09 04:16:40

连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,那么点P在圆x2+y2=17内部的概率是













A.












B.











C.











D.

网友回答

C解析分析:连续掷两次骰子,以先后得到的点数结果有36种,构成的点的坐标有36个,把这些点列举出来,检验是否满足x2+y2<17,满足这个条件的点就在圆的内部,数出个数,根据古典概型个数得到结果.解答:这是一个古典概型由分步计数原理知:连续掷两次骰子,构成的点的坐标有6×6=36个,而满足x2+y2<17的有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共有8个,∴P==,故选C.点评:将数形结合的思想渗透到具体问题中来,用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏.比如,列举点的坐标时,我们把横标从小变大挨个列举.
以上问题属网友观点,不代表本站立场,仅供参考!