已知双曲线的左右焦点分别为F1,F2,P为C的右支上一点,且|PF2|=|F1F2|,则△PF1F2的面积等于
A.24
B.36
C.48
D.96
网友回答
C解析分析:先根据双曲线方程求出焦点坐标,再利用双曲线的额性质求得||PF1|,作PF1边上的高AF2则可知AF1的长度,进而利用勾股定理求得AF2,则△PF1F2的面积可得.解答:解:∵双曲线中a=3,b=4,c=5,∴F1(-5,0),F2(5,0)∵|PF2|=|F1F2|,∴|PF1|=2a+|PF2|=6+10=16作PF1边上的高AF2,则AF1=8,∴∴△PF1F2的面积为故选C.点评:此题重点考查双曲线的第一定义,双曲线中与焦点,准线有关三角形问题;由题意准确画出图象,利用数形结合,注意到三角形的特殊性.