已知圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上.(1)求圆M的方程;(2)设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线

发布时间:2020-08-01 02:12:03

已知圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上.
(1)求圆M的方程;
(2)设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB的面积的最小值.

网友回答

解:(1)设圆M的方程为:(x-a)2+(y-b)2=r2(r>0),
根据题意得,解得:a=b=1,r=2,
故所求圆M的方程为:(x-1)2+(y-1)2=4;
(2)由题知,四边形PAMB的面积为S=S△PAM+S△PBM=|AM||PA|+|BM||PB|.
又|AM|=|BM|=2,|PA|=|PB|,所以S=2|PA|,
而|PA|2=|PM|2-|AM|2=|PM|2-4,
即S=2.
因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,
所以|PM|min==3,所以四边形PAMB面积的最小值为2=2.

解析分析:(1)设出圆的标准方程,利用圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上,建立方程组,即可求圆M的方程;(2)四边形PAMB的面积为S=2,因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,利用点到直线的距离公式,即可求得结论.

点评:本题考查圆的标准方程,考查四边形面积的计算,考查学生分析解决问题的能力,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!