已知正项等差数列an的前n项和为Sn,若S3=12,且2a1,a2,a3+1成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设,记数列bn的前n项和为Tn,求Tn.
网友回答
解:(Ⅰ)∵S3=12,即a1+a2+a3=12,
∴3a2=12,所以a2=4.(1分)
又∵2a1,a2,a3+1成等比数列,
∴a22=2a1?(a3+1),即a22=2(a2-d)?(a2+d+1),(3分)
解得,d=3或d=-4(舍去),
∴a1=a2-d=1,故an=3n-2.(6分)
(Ⅱ),
∴,①
①×得.②
①-②得=,(10分)
∴.(12分)
解析分析:(Ⅰ)先利用等差数列的性质以及S3=12求出a2=4;再代入2a1,a2,a3+1成等比数列求出公差即可求{an}的通项公式;(Ⅱ)把(Ⅰ)的结论代入,直接利用数列求和的错位相减法即可求Tn.
点评:本题的第二问考查了数列求和的错位相减法.错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.