填空题某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线的一部分,栏栅与矩形区域的边界交于点M,N,交曲线于点P,则△OMN(O为坐标原点)的面积的最小值为________.
网友回答
解析分析:求导函数,设出P的坐标,确定过点P的切线方程,进而可得M,N的坐标,表示出三角形的面积,利用导数法,即可确定△OMN(O为坐标原点)的面积的最小值.解答:求导函数,可得设P(m,)(m>0),则过点P的切线方程为y-()=×(x-m)令y=0,则x=,令x=0,则y=1+∴△OMN(O为坐标原点)的面积为S==求导函数可得S′=令S′=0,可得16m4+8m2-3=0∴m=∴m>时,函数单调增,0<m<时,函数单调减∴m=时,函数取得极小值且为最小值,最小值为故