一动圆与圆x2+y2+6x+5=0及圆x2+y2-6x-91=0都内切,则动圆圆心的轨迹是A.椭圆B.双曲线C.抛物线D.圆

发布时间:2020-08-01 02:33:06

一动圆与圆x2+y2+6x+5=0及圆x2+y2-6x-91=0都内切,则动圆圆心的轨迹是A.椭圆B.双曲线C.抛物线D.圆

网友回答

A
解析分析:设动圆的半径为r,由相切关系建立圆心距与r的关系,进而得到关于圆心距的等式,结合椭圆的定义即可解决问题.

解答:x2+y2+6x+5=0配方得:(x+3)2+y2=4;x2+y2-6x-91=0配方得:(x-3)2+y2=100;设动圆的半径为r,动圆圆心为P(x,y),因为动圆与圆A:x2+y2+6x+5=0及圆B:x2+y2-6x-91=0都内切,则PA=r-2,PB=10-r.∴PA+PB=8>AB=6因此点的轨迹是焦点为A、B,中心在( 0,0)的椭圆.故选A.

点评:本题主要考查了轨迹方程.当动点的轨迹满足某种曲线的定义时,就可由曲线的定义直接写出轨迹方程.
以上问题属网友观点,不代表本站立场,仅供参考!