已知函数f(x)的定义域为[0,1],且同时满足:①对于任意x∈[0,1],总有f(x)≥3;②f(1)=4;③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x

发布时间:2020-08-01 02:32:56

已知函数f(x)的定义域为[0,1],且同时满足:①对于任意x∈[0,1],总有f(x)≥3;②f(1)=4;③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-3.
(I)求f(0)的值;
(II)求函数f(x)的最大值;
(III)设数列,求证:.

网友回答

(Ⅰ)?解:令x1=x2=0,则有f(0)≥2f(0)-3,即f(0)≤3
又对于任意x∈[0,1],总有f(x)≥3,
∴f(0)=3 (3分)
(Ⅱ)解:任取x1,x2∈[0,1],x1<x2,
f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-3
∵0≤x1<x2≤1,则0<x2-x1<1,
∴f(x2-x1)≥3
∴f(x2)≥f(x1)+3-3=f(x1),即f(x)在[0,1]上递增.
∴当x∈[0,1]时,f(x)≤f(1)=4
∴f(x)的最大值为4   (6分)
(Ⅲ)证明:当n>1时,an=Sn-Sn-1=-(an-3)-(an-1-3),

∴数列{an}是以a1=1为首项,公比为 的等比数列.
∴an=(8分)
? f(1)=f[3n-1]=f[+(3n-1-1)×]≥f( )+f[(3n-1-1)×]-3≥…
??即 4≥3n-1f( )-3n+3.(10分)
∴f()≤,即f(an)≤3+.
∴f(a1)+f(a2)+…+f(an)≤(3+ )+(3+ )+…+(3+ )
=3n+=3n+<3n+=3(n+).
?又= log333?32n-2= (2n+1)=3(n+ ),
∴原不等式成立.(14分)
解析分析:(Ⅰ)直接取x1=0,x2=0利用f(x1+x2)≥f(x1)+f(x2)-3可得:f(0)≤3,再结合已知条件f(0)≥3即可求得f(0)=3;(Ⅱ)由0≤x1<x2≤1,则0<x2-x1<1,故有f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-3>f(x1),即f(x)在[0,1]内是增函数,故函数f(x)的最大值为f(1);(Ⅲ)先证明数列{an}是以a1=1为首项,公比为 的等比数列,进而可得f(1)=f[3n-1]=f[+(3n-1-1)×]≥f( )+f[(3n-1-1)×]-3≥…,即 4≥3n-1f( )-3n+3,即f(an)≤3+,从而可证不等式.

点评:本题主要是在新定义下对抽象函数进行考查,在做关于新定义的题目时,一定要先研究定义,在理解定义的基础上再做题.解题时要认真审题,合理运用条件.
以上问题属网友观点,不代表本站立场,仅供参考!