(平)定义在R上的函数f(x)满足,且当0≤x1<x2≤1时,有f(x1)≤f(x2),则f()等于A.B.C.D.

发布时间:2020-07-31 13:53:07

(平)定义在R上的函数f(x)满足,且当0≤x1<x2≤1时,有f(x1)≤f(x2),则f()等于A.B.C.D.

网友回答

C
解析分析:令x=1,由f(0)=0,f(x)+f(1-x)=1,求得f(1)=1,令x=1,反复利用f(x?)=f(x),可得f( )= f( )=,再令x=,由f(x)+f(1-x)=1,可求得f(),同理反复利用f(x?)=f(x),可得f( )=f( )=,可求f(),进而可求f()

解答::∵f(0)=0,f(x)+f(1-x)=1,令x=1得:f(1)=1,又f(x? )=f(x),∴当x=1时,f( )= f(1)=;令x=,由f(x )= f(x)f()=f( )=;同理可求:f( )= f()=;f( )=f( )=;f( )= f( )=①再令x=,由f(x)+f(1-x)=1,可求得f( )=,令x=,反复利用f(x? )= f(x)可得f()=)=f( )=;f( )= f( )=;…f( )=f( )= ②由①②可得:f()=f( )=,∵当0≤x1<x2≤1时,有f(x1)≤f(x2),而0<<<<1所以有f()≥f( )=,?????? f()≤f( )=∴f()=∴f()=故选C

点评:本题考查抽象函数及其应用,难点在于利用f(0)=0,f(x)+f(1-x)=1,两次赋值后都反复应用f(x)=f(x),从而使问题解决,属于难题.
以上问题属网友观点,不代表本站立场,仅供参考!