已知函数上是增函数,则实数a的取值范围是A.B.C.[1,+∞)D.[1,2]
网友回答
D
解析分析:由题意可得,函数在(-∞,1)上是增函数,在(1,+∞)上也是增函数,且有-12+2a×1≤(2a-1)×1-3a+6,从而可得一不等式组,解出即可.
解答:因为函数f(x)在(-∞,+∞)上是增函数,所以f(x)在(-∞,1),(1,+∞)上均单调递增,且-12+2a×1≤(2a-1)×1-3a+6,故有,解得1≤a≤2.所以实数a的取值范围是[1,2].故选D
点评:本题考查函数的单调性的性质,考查学生分析问题解决问题的能力,注意体会数形结合思想在分析问题中的作用.