在棱锥P-ABC中,侧棱PA、PB、PC两两垂直,Q为底面△ABC内一点,若点Q到三个侧面的距离分别为3、4、5,则以线段PQ为直径的球的表面积为A.100πB.50πC.25πD.
网友回答
B
解析分析:根据题意,点Q到三个侧面的垂线与侧棱PA、PB、PC围成一个棱长为3、4、5的长方体,分析可知以PQ为直径的球是它的外接球,再由长方体和其外接球的关系求解.
解答:根据题意:点Q到三个侧面的垂线与侧棱PA、PB、PC围成一个棱长为3、4、5的长方体,则其外接球的直径即为PQ且为长方体的体对角线.∴2r=∴由球的表面积公式得:S=4πr2=50π故选B.
点评:本题主要考查空间几何体的构造和组合体的基本关系.