解答题如果有穷数列a1,a2,a3,…,am(m=2k,k∈N*)满足条件a1=-am

发布时间:2020-07-09 07:21:18

解答题如果有穷数列a1,a2,a3,…,am(m=2k,k∈N*)满足条件a1=-am,a2=-am-1,…,am=-a1即ai=-am-i+1(i=1,2,…,m),我们称其为“反对称数列”.
(1)请在下列横线上填入适当的数,使这6个数构成“反对称数列”:-8,________,-2,________,4,________;
(2)设{cn}是项数为30的“反对称数列”,其中c16,c17,c18,…,c30构成首项为-1,公比为2的等比数列.设Tn是数列{ncn}的前n项和,则T15=________.

网友回答

解:(1)∵有穷数列a1,a2,a3,…,am(m=2k,k∈N*)满足条件a1=-am,a2=-am-1,…,am=-a1即ai=-am-i+1(i=1,2,…,m),我们称其为“反对称数列”.
∴a1=-a6,a2=-a5,a3=-a4,
∴a6=-a1=8,a2=-a5=4,a4=-a3=2
以上问题属网友观点,不代表本站立场,仅供参考!