已知a、b、c分别为△ABC的三个内角A、B、C的对边,且a、b、c成等差数列,B=60°,则△ABC的形状为________.
网友回答
正三角形
解析分析:求出A+C=120°,据a、b、c成等差数列,得 2b=a+c,由正弦定理可得 =sinA+sinC,解得cos=1,从而得到A-C=0,故△ABC为等边三角形.
解答:∵B=60°,∴A+C=120°.∵a、b、c成等差数列,∴2b=a+c,由正弦定理可得 2sinB==sinA+sinC=2sin?cos=cos,∴cos=1,又-<A-C<,∴A-C=0,故△ABC为等边三角形,故