已知f(x)为偶函数,当x≥0时,f(x)=-(x-1)2+1,满足f[f(a)]=的实数a的个数为________个.
网友回答
8
解析分析:令f(a)=x,则f[f(a)]=,转化为f(x)=.先解f(x)=在x≥0时的解,再利用偶函数的性质,求出f(x)=在x<0时的解,最后解方程f(a)=x即可.
解答:令f(a)=x,则f[f(a)]=,变形为f(x)=;当x≥0时,f(x)=-(x-1)2+1=,解得x1=1+,x2=1-;∵f(x)为偶函数,∴当x<0时,f(x)=的解为x3=-1-,x4=-1+;综上所述,f(a)=1+或1-或-1-或-1+.当a≥0时,f(a)=-(a-1)2+1=1+,方程无解;f(a)=-(a-1)2+1=1-,方程有2解;f(a)=-(a-1)2+1=-1-,方程有1解;f(a)=-(a-1)2+1=-1+,方程有1解;故当a≥0时,方程f(a)=x有4解,由偶函数的性质,易得当a<0时,方程f(a)=x也有4解,综上所述,满足f[f(a)]=的实数a的个数为8,故