定义在(1,+∞)上的函数f(x)满足下列两个条件:
①对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;
②当x∈(1,2]时,f(x)=2-x;
如果关于x的方程f(x)=k(x-1)恰有两个不同的解,那么实数k的取值范围是A.B.C.D.
网友回答
B
解析分析:根据题中的条件得到函数的解析式为:f(x)=-x+2b,x∈(b,2b],又因为f(x)=k(x-1)的函数图象是过定点(1,0)的直线,再结合函数的图象根据题意求出参数k的范围即可.
解答:解:直线y=k(x-1)过定点M(1,0),画出f(x)在(1,+∞)上的部分图象如图,得A(2,2)、B(4,4).又,kMB=2.由题意得f(x)=k(x-1)的函数图象是过定点(1,0)的直线,如图所示红色的直线与线段AB相交即可(可以与B点重合但不能与A点重合)分析图象知,当时f(x)=k(x-1)有两个不同的解.故选B.
点评:解决此类问题的关键是熟悉求函数解析式的方法以及函数的图象与函数的性质,数形结合思想是高中数学的一个重要数学数学,是解决数学问题的必备的解题工具.