数列{an}的前n项和为Sn,且Sn=an-1,则a2=
A.
B.
C.
D.
网友回答
D解析分析:先根据Sn-Sn-1=an,根据题设中的等式,化简整理求得=判断出数列{an}是首项为,公比为的等比数列,进而根据等比数列的通项公式求得an,求出a2.解答:∵Sn=an-1 即且Sn=5an-5,∴n≥2时,Sn-Sn-1=5an-5-(5an-1-5)=an,即5an-5an-1=an,即4an=5an-1,=,故数列{an}是首项为,公比为的等比数列,an=()n,当n=1时,也成立,∴a2=故选D.点评:本题主要考查了求数列的通项公式.解题的关键是利用了Sn-Sn-1=an.