如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥AB,PA⊥AD,PA=AD=2AB,E为线段AD上的一点,且.
(I)当BE⊥PC时,求λ的值;
(II)求直线PB与平面PAC所成的角的大小.
网友回答
解:(I)以A为原点,以AB,AD,AP为x轴,y轴,z轴建立空间直角坐标系,
设AB=1,则PA=AD=2,
又设|AE|=y,则:=(1,2,-2),
由=0,可得-1+2y=0,∴,
又∵,∴,
∴λ=….(6分)
(II)由(I)知面PAC的法向量为
又因为
设PB与面PAC所成的角为α,则:,
∵
∴PB所求PB与面PAC所成的角的大小为:….(12分)
解析分析:(I)以A为原点,以AB,AD,AP为x轴,y轴,z轴建立空间直角坐标系,利用坐标表示向量,根据=0,,即可求得λ的值;(II)确定面PAC的法向量为,,利用向量的夹角公式,即可求得直线PB与平面PAC所成的角.
点评:本题考查利用空间向量解决立体几何问题,考查线面角,解题的关键是建立坐标系,正确表示向量.