如图,在四棱锥P-ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,若E、F分别为PC、BD的中点.
(Ⅰ)?求证:EF∥平面PAD;
(Ⅱ)?求证:EF⊥平面PDC.
网友回答
证明:(Ⅰ)连接AC,则F是AC的中点,在△CPA中,EF∥PA(3分)
且PA?平面PAD,EF?平面PAD,
∴EF∥平面PAD(6分)
(Ⅱ)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
又CD⊥AD,所以CD⊥平面PAD,
∴CD⊥PA(9分)
又PA=PD=AD,
所以△PAD是等腰直角三角形,且∠APD=,即PA⊥PD(12分)
而CD∩PD=D,
∴PA⊥平面PDC,又EF∥PA,所以EF⊥平面PDC(14分)
解析分析:对于(Ⅰ),要证EF∥平面PAD,只需证明EF平行于平面PAD内的一条直线即可,而E、F分别为PC、BD的中点,所以连接AC,EF为中位线,从而得证;对于(Ⅱ)要证明EF⊥平面PDC,由第一问的结论,EF∥PA,只需证PA⊥平面PDC即可,已知PA=PD=AD,可得PA⊥PD,只需再证明PA⊥CD,而这需要再证明CD⊥平面PAD,由于ABCD是正方形,而PAD⊥底面ABCD,由面面垂直的性质可以证明,从而得证.
点评:本题考查线面平行的判定及线面垂直的判定,而其中的转化思想的应用值得注意,将线面平行转化为线线平行;证明线面垂直,转化为线线垂直,在证明线线垂直时,往往还要通过线面垂直来进行.