解答题已知函数f(x)=21nx+ax2-1?(a∈R)(I)求函数f(x)的单调区间

发布时间:2020-07-09 06:40:02

解答题已知函数f(x)=21nx+ax2-1?(a∈R)
(I)求函数f(x)的单调区间;
(Ⅱ)若a=l,试解答下列两小题.
(i)若不等式f(1+x)+f(1-x)<m对任意的0<x<l恒成立,求实数m的取值范围;
(ii)若x1,x2是两个不相等的正数,且以f(x1)+f(x2)=0,求证:x1+x2>2.

网友回答

(I)解:函数f(x)的定义域为(0,+∞),f′(x)=
令f′(x)>0,∵x>0,∴2ax2+2>0
①当a≥0时,f′(x)>0在(0,+∞)上恒成立,∴f(x)递增区间是(0,+∞);
②当a<0时,由2ax2+2>0可得<x<
x>0,∴f(x)递增区间是(0,),递减区间为;
(Ⅱ)(i)解:设F(x)=f(1+x)+f(1-x)=2ln(1+x)+2ln(1-x)+2x2,则F′(x)=
∵0<x<l,∴F′(x)<0在(0,1)上恒成立,∴F(x)在(0,1)上为减函数
∴F(x)<F(0)=0,∴m≥0,∴实数m的取值范围为[0,+∞);
(ii)证明:∵f(x1)+f(x2)=0,
∴21nx1+x12-1+21nx2+x22-1=0
∴2lnx1x2+(x1+x2)2-2x1x2-2=0
∴(x1+x2)2=2x1x2-2lnx1x2+2
设t=x1x2,则t>0,g(t)=2t-2lnt+2,∴g′(t)=
令g′(t)>0,得t>1,∴g(t)在(0,1)上单调递减,在(1,+∞)上单调递增
∴g(t)min=g(1)=4,∴(x1+x2)2>4,∴x1+x2>2.解析分析:(I)函数f(x)的定义域为(0,+∞),求导函数,令f′(x)>0,分类讨论可得函数的单调区间;(Ⅱ)(i)构造函数F(x)=f(1+x)+f(1-x)=2ln(1+x)+2ln(1-x)+2x2,求导函数,确定F(x)在(0,1)上为减函数,从而可求实数m的取值范围;(ii)由f(x1)+f(x2)=0,可得(x1+x2)2=2x1x2-2lnx1x2+2设t=x1x2,则t>0,g(t)=2t-2lnt+2,求出g(t)min,即可证得结论.点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,解题的关键是构造函数,正确运用导数.
以上问题属网友观点,不代表本站立场,仅供参考!