如图∠BOP=∠AOP=15°,PC∥OB,PD⊥PB于D,PC=2,则PD的长度为A.4B.3C.2D.1
网友回答
D
解析分析:作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.
解答:解:作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=PC=×2=1(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=1,故选D.
点评:此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.