填空题如图,AB为圆O的直径,C为圆O上一点,AP和过C的切线互相垂直,垂足为P,过B的切线交过C的切线于T,PB交圆O于Q,若∠BTC=120°,AB=4,则PQ?PB=________.
网友回答
3解析分析:根据题意,圆的半径等于2,设PT与AB交与点M,可得∠COB=60°=∠BTM,∠BMT=30°,利用直角三角形中的边角关系求得TB、BM、MP的值,由切割线定理求得 MC,求得PC=MP-MC的值,据PQ?PB=PC2?求出结果.解答:由题意可得,圆的半径等于2,设PT与AB交与点M,∵∠BTC=120°,则∠COB=60°=∠BTM,∠BMT=30°.TB=TC=OBtan30°=,∴BM==2.由切割线定理可得 MC2=MB?MA=2(2+4)=12,∴MC=2. ∵cos∠BMT====,∴MP=3,∴PC=MP-MC=3-2=,由切割线定理可得 PQ?PB=PC2=3,故