解答题设数列{an}的前n项和为Sn,且满足Sn=n-an,n∈N*.(Ⅰ)证明数列{

发布时间:2020-07-09 01:07:05

解答题设数列{an}的前n项和为Sn,且满足Sn=n-an,n∈N*.
(Ⅰ)证明数列{an-1}是等比数列;
(Ⅱ)设cn=-2nan+2n,数列{cn}的前n项和为Tn,求证:Tn<4.

网友回答

解:(Ⅰ)∵n=1时,S1=1-a1,即a1=1-a1,a1=.
∵Sn=n-an,∴Sn-1=n-1-an-1,n>1.
两式相减,得an=an-1+.…(3分)
an-1=(an-1-1).
从而{an-1}为等比数列,首项a1-1=-,公比为.…(6分)
(Ⅱ)由(Ⅰ)知an-1=.从而an=.…(8分)
∵cn=-2nan+2n,∴=,
∴.…(10分)
从而,
两式相减,得.
-=.
∴Tn<4.…(13分)解析分析:(Ⅰ)求出a1,然后利用an=Sn-Sn-1得到an与an-1的关系,化简为数列{an-1}中任意相邻两项之间的关系,通过等比数列的定义证明数列是等比数列;(Ⅱ)通过(Ⅰ)求出数列的通项公式,结合cn=-2nan+2n,求出数列{cn}的前n项和为Tn的表达式,利用错位相减法求出数列的前n项和,即可求证:Tn<4.点评:证明数列是等差数列还是等比数列,常用数列的定义证明,在第二问中,错位相减法是数列求和的常用方法,注意构造法在数列中的应用.
以上问题属网友观点,不代表本站立场,仅供参考!