一次数学课上,老师让大家在一张长12cm、宽5cm的矩形纸片内,折出一个菱形.甲同学按照取两组对边中点的方法折出菱形EFGH(见方案一),乙同学沿矩形的对角线AC折出

发布时间:2020-07-29 21:26:22

一次数学课上,老师让大家在一张长12cm、宽5cm的矩形纸片内,折出一个菱形.甲同学按照取两组对边中点的方法折出菱形EFGH(见方案一),乙同学沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较这两种折法中,菱形面积较大的是
A.甲B.乙C.甲乙相等D.无法判断

网友回答

B
解析分析:方案一中,通过图可知四个小直角三角形全等,用矩形面积减去4个小直角三角形的面积,即可得菱形面积;方案二中,两个小直角三角形全等,设菱形边长为x,在直角三角形中利用勾股定理可求x,再利用底×高可求菱形面积.然后比较两者面积大小.

解答:方案一中,∵E、F、G、H都是矩形ABCD的中点,∴△HAE≌△HDG≌△FCG≌△FBE,S△HAE=AE?AH=×AB×AD=××5××12=,S菱形EFGH=S矩形ABCD-4S△HAE=12×5-×4=30;方案二中,设BE=x,则CE=AE=12-x,∵AF=EC,AB=CD,AE=CF,∴△ABE≌△CDF,在Rt△ABE中,AB=5,BE=x,AE=12-x,由勾股定理得(12-x)2=52+x2,解得x=,S△ABE=BE?AB=××5=,S菱形EFGH=S矩形ABCD-2S△ABE=12×5-×2≈60-25=35>30,故甲<乙.故选B.

点评:本题考查了菱形面积的不同求法.
以上问题属网友观点,不代表本站立场,仅供参考!