解答题已知函数f(x)=(x2+ax+2)ex,(x,a∈R).(1)当a=0时,求函

发布时间:2020-07-09 01:19:31

解答题已知函数f(x)=(x2+ax+2)ex,(x,a∈R).
(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;
(2)若f(x)在R上单调,求a的取值范围;
(3)当时,求函数f(x)的极小值.

网友回答

解:f'(x)=ex[x2+(a+2)x+a+2],
(1)当a=0时,f(x)=(x2+2)ex,f'(x)=ex(x2+2x+2),
f(1)=3e,f'(1)=5e,
∴函数f(x)的图象在点A(1,f(1))处的切线方程为y-3e=5e(x-1),
即5ex-y-2e=0
(2)f'(x)=ex[x2+(a+2)x+a+2],,
考虑到ex>0恒成立且x2系数为正,
∴f(x)在R上单调等价x2+(a+2)x+a+2≥0恒成立.
∴(a+2)2-4(a+2)≤0,
∴-2≤a≤2,即a的取值范围是[-2,2],
(3)当a=-时,f(x)=(x2-x+2)ex,f'(x)=ex(x2-x-),
令f'(x)=0,得x=-,或x=1,
令f'(x)>0,得x<-,或x>1,
令f'(x)<0,得-<x<1????????????????????
x,f'(x),f(x)的变化情况如下表
X(-∞,-)-(-,1)1(1,+∞)f'(x)+0-0+f(x)增极大值减极小值增所以函数f(x)的极小值为f(1)=解析分析:(1)先求出函数f(x)的导函数,求出切点坐标,根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成一般式即可;(2)若f(x)在R上单调,则f'(x)=ex[x2+(a+2)x+a+2]>0恒成立,考虑到ex>0恒成立且x2系数为正,从而等价x2+(a+2)x+a+2≥0恒成立,利用判别式建立关系式,即可求出所求;(3)先求出f′(x)=0的值,再讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值即可.点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数研究函数的极值和恒成立问题,同时考查了计算能力、转化与划归的思想,属于综合题.
以上问题属网友观点,不代表本站立场,仅供参考!