如图,四棱锥E-ABCD中,ABCD是矩形,平面EAB⊥平面ABCD,AE=EB=BC=2,F为CE上的点,
且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)求二面角A-CD-E的余弦值.
网友回答
证明:(1)∵ABCD是矩形,
∴BC⊥AB,
∵平面EAB⊥平面ABCD,
平面EAB∩平面ABCD=AB,BC?平面ABCD,
∴BC⊥平面EAB,
∵EA?平面EAB,
∴BC⊥EA,
∵BF⊥平面ACE,EA?平面ACE,
∴BF⊥EA,
∵BC∩BF=B,BC?平面EBC,BF?平面EBC,
∴EA⊥平面EBC,
∵BE?平面EBC,
∴EA⊥BE.
解:(2)∵EA⊥BE,
∴AB==2
S△ADC===2
设O为AB的中点,连接EO,
∵AE=EB=2,
∴EO⊥AB,
∵平面EAB⊥平面ABCD,
∴EO⊥平面ABCD,即EO为三棱锥E-ADC的高,且EO=AB=,
∴VD-ABC=VE-ADC=?S△ADC×EO=.
(3)以O为原点,分别以OE、OB所在直线为x轴,y轴,建立空间直角坐标系,则E(,0,0),C(0,,2),A(0,-,0),D(0,-,2),
∴=(,0,0),=(0,-2,0),=(,,-2),
由(2)知=(,0,0)是平面ACD的一个法向量,设平面ECD的法向量为=(x,y,z),
则,即,令x=,则y=0,z=1,
所以=(,0,1),设二面角A-CD-E的平面角的大小为θ,由图得0<θ<,
cosθ=cos<,>=
所以二面角A-CD-E的余弦值为.
解析分析:(1)由已知中ABCD是矩形,平面EAB⊥平面ABCD,根据面面垂直的性质可得BC⊥平面EAB,进而根据线面垂直的性质得到BC⊥EA,同理BF⊥EA,由线面垂直判定定理可得EA⊥平面EBC,再由线面垂直的性质即可得到AE⊥BE;(2)设O为AB的中点,连接EO,可证得EO为三棱锥E-ADC的高,求出三棱锥的底面面积和高的长度,代入棱锥体积公式,即可求出