给出下列命题①若直线l与平面α内的一条直线平行,则l∥α;②若平面α⊥平面β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面β;③?x0∈(3,+∞),x0?(

发布时间:2020-07-31 19:25:54

给出下列命题
①若直线l与平面α内的一条直线平行,则l∥α;
②若平面α⊥平面β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面β;
③?x0∈(3,+∞),x0?(2,+∞);
④已知a∈R,则“a<2”是“a2<2a”的必要不充分条件.
其中正确命题的个数是A.4B.3C.2D.1

网友回答

C
解析分析:对于①,考虑直线与平面平行的判定定理;对于②,考虑平面与平面垂直的性质定理;对于③,考虑两个集合间的包含关系;对于④,考虑充要条件中条件与结论的互推关系.

解答:对于①,直线与平面平行的判定定理中的条件是直线在平面外,而本命题没有,故错误;对于②,符合平面与平面垂直的性质定理,故正确;对于③,考虑两个集合间的包含关系(2,+∞)?(3,+∞),而x0∈(3,+∞),比如x=4,则4∈(2,+∞),故错误;对于④,由a2<2a可以得到:0<a<2,一定推出a<2,反之不一定成立,故“a<2”是“a2<2a”的必要不充分条件,此命题正确.综上知②④中的命题正确,故选C.

点评:本题考查直线与平面的平行关系的判定,面面垂直的性质定理,集合间的关系以及充要条件概念等,抓住概念的内涵与外延,是解决本类综合题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!