在数列an中,a1=2,an+1=2an+2n+1(n∈N).(1)求证:数列为等差数列;(2)若m为正整数,当

发布时间:2020-07-31 18:21:43

在数列an中,a1=2,an+1=2an+2n+1(n∈N).
(1)求证:数列为等差数列;
(2)若m为正整数,当

网友回答

解:(I)由an+1=2an+2n+1变形得:
故数列是以为首项,1为公差的等差数列
(II)由(I)得an=n?2n

当=
又∴
则为递减数列.
当m=n时,f(n)>f(n+1)
∴当m≥n≥2时,f(n)递减数列.

要证:时,
=
故原不等式成立.
解析分析:(I)把题设中数列递推式变形得,根据等差数列的定义判断出数列是等差数列.(II)根据(I)可求得数列的通项公式,进而求得an,令f(n)=,则可表示出f(n+1),进而求得当m≥n≥2时的表达式,进而求得解决大于1,判断出f(n)为递减数列,进而可推断出f(n)的最大值为f(2),进而问题转化为证明f(2)≤.进而根据推断出进而可知原式得证.

点评:本题主要考查了等差关系的确定,数列与不等式的综合运用.考查了考生综合分析问题和演绎推理的能力,转化和化归思想的运用.属中档题.
以上问题属网友观点,不代表本站立场,仅供参考!