填空题设首项为1的数列{an}的前n项和为Sn,且Sn+1-2Sn=2n,n∈N*,则其通项an=________.
网友回答
(n+1)2n-2解析分析:利用Sn-Sn-1=an,转化Sn+1-2Sn=2n,为Sn=an+1-2n的关系,推出an+1=2an+2 n-1,说明{}是以为首相d=为公差的等差数列,即可求出通项公式.解答:由Sn-Sn-1=an则Sn+1-Sn=an+1,Sn+1-2Sn=2n,n∈N*,Sn+1-Sn-Sn=2n,则an+1-Sn=2n,Sn=an+1-2n,∴an=Sn-Sn-1?=an+1-2n-[an-2n-1]=-2 n-1+an+1-an∴an+1=2an+2 n-1(两边同除以2n+1)∴,∴,所以{}是以为首相d=为公差的等差数列化简:an=(n+1)2n-2.故