解答题如图,已知抛物线y=4-x2与直线y=3x的两个交点分别为A、B,点P在抛物线上

发布时间:2020-07-09 06:33:37

解答题如图,已知抛物线y=4-x2与直线y=3x的两个交点分别为A、B,点P在抛物线上从A向B运动(点P不同于点A、B),
(Ⅰ)求由抛物线y=4-x2与直线y=3x所围成的图形面积;
(Ⅱ)求使△PAB的面积为最大时P点的坐标.

网友回答

解(Ⅰ)由解得或
即A(1,3),B(-4,-12)
因此所求图形的面积为=
(Ⅱ)设点P的坐标为(a,b)由(Ⅰ)得A(1,3),B(-4,-12)
要使△PAB的面积最大即使点P到直线3x-y=0的距离最大??故过点P的切线与直线3x-y=0平行
又过点P的切线得斜率为k=y'=-2x|x=a=-2a∴-2a=3即,
∴P点的坐标为时,△PAB的面积最大.解析分析:(Ⅰ)联立方程可求A(1,3),B(-4,-12),所求图形的面积为,利用积分可求(Ⅱ)设点P的坐标为(a,b)由(Ⅰ)可得A,B,要使△PAB的面积最大即使点P到直线3x-y=0的距离最大,故过点P的切线与直线3x-y=0平行,从而可求点评:本题主要考查了直线与抛物线的位置关系的应用.利用定积分求解图象的面积的最值,属于基础试题
以上问题属网友观点,不代表本站立场,仅供参考!