已知a>0,a≠1,设p:函数y=loga(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真

发布时间:2020-08-01 01:43:04

已知a>0,a≠1,设p:函数y=loga(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真命题,求a的取值范围.

网友回答

解:若p为真,则0<a<1.若q为真,
则△>0即(2a-3)2-4>0解得a<或a>.
∵p且q为假,p或q为真,
∴p与q中有且只有一个为真命题.(a>0且a≠1)
若p真q假,则
∴≤a<1
若p假q真,则
∴a
综上所述,a的取值范围为:[,1)∪(,+∞).

解析分析:根据对数函数的单调性我们易判断出命题p为真命题时参数a的取值范围,及命题p为假命题时参数a的取值范围;根据二次函数零点个数的确定方法,我们易判断出命题q为真命题时参数a的取值范围,及命题q为假命题时参数a的取值范围;由p且q为假命题,p或q为真命题,我们易得到p与q一真一假,分类讨论,分别构造关于x的不等式组,解不等式组即可得到
以上问题属网友观点,不代表本站立场,仅供参考!