曲线在点(1,1)处的切线为l,则l上的点到圆x2+y2+4x+3=0上的点的最近距离是A.B.C.D.2

发布时间:2020-07-31 13:57:42

曲线在点(1,1)处的切线为l,则l上的点到圆x2+y2+4x+3=0上的点的最近距离是A.B.C.D.2

网友回答

B
解析分析:先对函数进行求导,把x=1代入求得切线的斜率,进而利用切点求得切线的方程,整理圆的方程为标准方程求得圆心和半径,进而利用点到直线的距离求得圆心到切线的距离,减去半径的长即是l上的点到圆的最小距离.

解答:对函数求导可得,y'=当x=1时,y'=-1即切线斜率是-1所以切线l的方程为x+y-2=0整理圆的方程得(x+2)2+y2=1,故圆心为(-2,0),∴圆心到切线的距离d=>1则切线与圆的位置关系为相离,圆的半径为1,∴l上的点到圆的点的最小距离为2故选B

点评:本题主要考查了点到直线的距离公式的应用,直线与圆的位置关系,导函数求切线的问题.考查了学生综合基础知识的应用和数形结合思想的应用.
以上问题属网友观点,不代表本站立场,仅供参考!