解答题已知:有穷数列{an}共有2k项(整数k≥2?),a1=2,设该数列的前n项和为Sn且满足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.
(1)求{an}的通项公式.
(2)设bn=log2an,求{bn}的前n项和Tn.
(3)设cn=,若a=2,求满足不等式≥时k的最小值.
网友回答
解:(1)由Sn+1=aSn+2(n=1,2,,2k-1)(1)
Sn=aSn-1+2(n=2,3,,k)(2)
(1)-(2)得an+1=a?an(n=2,3,,2k-1)
由(1)式S2=aS1+2,a1+a2=aS1+2
解得a2=2a,因为
所以{an}是以2为首项,a为公比的等比数列,an=2?an-1(n=1,2,2k)
(2)∵bn-bn-1=log2an-log2an-1=log2an-1log2=log2a(n=2,3,2k)
∴{bn}是以b1=1为首项,以log2a(a>1)为公差的等差数列
∴Tn==
=n+(a>1,n=1,2,,2k)
(3)cn==1+=1+(n=1,2,,2k)
当cn≤时,n≤k+,n为正整数,知n≤k时,cn<
当n≥k+1时,cn>
=(-c1)+(-c2)++(-ck)+(ck+1-)++(c2k-)
=(ck+1+ck+2++c2k)-(c1+c2++ck)
={[k+(k+1)++(2k-1)]+2k}-{[1+2++(k-1)]+k}
=[-]
=≥
即11k2-72k+3≥0,(11k-6)(k-6)≥0解得k≥6或k≤
所以满足条件的k的最小值为6.解析分析:(1)由Sn+1=aSn+2(n=1,2,,2k-1),知Sn=aSn-1+2(n=2,3,,k),由此得an+1=a?an,从而能求出{an}的通项公式.(2)由bn-bn-1=log2an-log2an-1=log2an-1log2=log2a(n=2,3,2k),知{bn}是以b1=1为首项,以log2a(a>1)为公差的等差数列,由此能求出Tn.(3)cn==1+=1+(n=1,2,,2k),当cn≤时,n≤k+,n为正整数,知n≤k时,cn<.当n≥k+1时,11k2-72k+3≥0,由此解得满足条件的k的最小值为6.点评:本题考查数列的性质和应用,解题时要注意公式的合理运用.